EKSPONEN DAN LOGARITMA: Menyederhanakan Bentuk Akar

Jika a dan b adalah bilangan riil dan n,m,p dan q adalah bilangan asli, maka bentuk akar yang dihasilkan akan mempunyai sifat-sifat sebagai berikut :
1) Dalam pecahan, penyebut q selalu menjadi pangkat dari akar, sementara pembilang p selalu menjadi pangkat dari bilangan riil a.
apq=apqapq=apq

Contoh :
532=532=125532=532=125
2) Ketika derajat akar dan pangkat dari akar tersebut adalah sama, maka hasil yang diperoleh sama dengan radikannya (bilangan di bawah tanda akar).
(an)n=a(an)n=a

Contoh :
(73)3=(713)3=733=7(73)3=(713)3=733=7
3) Akar pangkat n dari perkalian dua buah bilangan sama dengan perkalian antara akar pangkat n dari kedua bilangan tersebut.
abn=anbnabn=anbn

Contoh :
243=833=8333=233243=833=8333=233
4) Seperti halnya dalam perkalian, akar pangkat n dari pembagian dua buah bilangan sama dengan pembagian antara akar pangkat n dari kedua bilangan tersebut.
abn=anbnabn=anbn

Contoh :
916=916=34916=916=34
5) Jika akar pangkat n dari suatu bilangan dipangkatkan dengan m, maka kita dapat menempatkan m sebagai pangkat dari bilangan tersebut.
(an)m=amn(an)m=amn

Contoh :
(84)2=824=164=2(84)2=824=164=2
6) Sifat ini digunakan jika derajat dari akar dapat dibagi oleh pangkat dari bilangan riil a.
amnm=anamnm=an

Contoh :
166=4232=43166=4232=43
7) Dalam kasus akar di dalam akar, kita selalu dapat mengalikan derajat dari kedua akar dan mendapatkan derajat gabungan
amn=anmamn=anm

Contoh :
1135=1153=11151135=1153=1115
8) Jika suatu bilangan riil dikalikan dengan suatu akar pangkat n, maka kita dapat menempatkan bilangan riil tersebut ke bawah tanda akar, yaitu dengan memangkatkan bilangan riil tersebut dengan n.
abn=anbnabn=anbn

Contoh :
323=3323=2723=543
Ishar Yulian Satriani
Entah mau ngetik apaan :v
SHARE

0 Komentar

Post a Comment

Berikan pendapat Anda tentang materi yang kami sajikan!

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel